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What Very Small Numbers Mean

Dae J. Cohen, Jennifer M. Ferrell,

and Nathan Johnson

University of North Carolina at Wilmington

This article presents a theoretical and experimental framework for assessing the biases associated with
the interpretation of numbers. This framework consists of having participants convert between different
representations of quantities. These representations should include both variations in numerical labels
that symbolize quantities and variations in displays in which quantity is inherent. Five experiments
assessed how people convert between relative frequencies, decimals, and displays of dots that denote
very low proportions (i.e., proportions below 1%). The participants demonstrated perceptual, response,
and numerical transformation biases. Furthermore, the data suggest that relative frequencies and decimals
are associated with different abstract representations of amount.

Scientists and lay people use several numerical formats (i.e., any
symbol system used to represent quantities) to symbolize propor-
tions. For example, the decimal “0.5” and relative frequency “1in
2" symbolize the same proportion. Although relative frequencies
and decimals denote proportions equally well, people may inter-
pret these numerical formats differently. Nevertheless, researchers
often make an implicit assumption that people interpret these
numerical formats equivalently (termed the assumption of numer-
ical equivalence). The implicit assumption of numerical equiva-
lence is prevalent in studies of psychophysics (e.g., Gescheider,
1988; Marks, 1974; Marks & Algom, 1998; Stevens, 1956, 1986),
risk estimation (e.g., D. J. Cohen & Bruce, 1997; Gladis, Michela,
Walter, & Vaughan, 1992; Hansen, Hahn, & Wolkenstein, 1990;
Mickler, 1993; van der Velde, van der Plight, & Hooykaas, 1994),
mathematics (e.g., Ashcroft, 1992; Ashcroft & Kirk, 2001; Camp-
bell & Xue, 2001), reasoning (e.g., Kahneman & Tversky, 1972;
Tversky & Kahneman, 1974; Wanke, Schwarz, & Bless, 1995),
and probability estimation (e.g., Begg, 1974; Brooke & MacRae,
1977; Hollands & Dyre, 2000; Shuford, 1961; Spence, 1990;
Teigen, 1973; Tversky & Fox, 1995; Varey, Méellers, & Birnbaum,
1990), to name just a few. The assumption of numerical equiva-
lence, however, should not be made lightly because people’'s
interpretation of numbers likely affects the data they produce, and
thus the conclusions that researchers draw.

In this article, we present a theoretical and experimental frame-
work for assessing the biases associated with how people interpret
numbers, and we show how this framework can reveal details
concerning how quantity information is represented in the human
brain. We report five experiments that assess how people interpret
and represent relative frequencies and decimals that denote very

Dale J. Cohen, Jennifer M. Ferrell, and Nathan Johnson, Department of
Psychology, University of North Carolina at Wilmington.

This article was partially supported by a Charles Cahill grant from the
University of North Carolina at Wilmington. We thank Steffaney Cohen,
Nikole Eagen, Julian Keith, Len Lecci, and William Overman for their
helpful comments and support at various stages of this project.

Correspondence concerning this article should be addressed to Dale J.
Cohen, Department of Psychology, University of North Carolina at Wil-
mington, Wilmington, North Carolina 28403-3297. E-mail: cohend@
uncwil .edu

424

low proportions (i.e., proportions below 1%). We chose to exam-
ine very low proportions for three reasons: (a) There is extensive
evidence that people do not interpret numerical labels (i.e., any
individual symbol representing quantity) symbolizing very low
proportions accurately (for a review, see Rothman & Kiviniemi,
1999), (b) numerical labels symbolizing very low proportions are
vital to the communication of issues ranging from health risks to
pollution (e.g., Environment Protection Agency, 1991), and (c)
peopl€’s interpretation of relatively common quantities (between
1% and 99%) has been studied (e.g., see Begg, 1974; Brooke &
MacRae, 1977; Hollands & Dyre, 2000; Shuford, 1961; Spence,
1990; Teigen, 1973; Tversky & Fox, 1995; Varey et al., 1990) and
therefore can serve as a comparison group.

Estimating Proportions

Most psychophysical research on the relation between perceived
and estimated proportions has concentrated on quantities between
1% and 99% (e.g., see Begg, 1974; Brooke & MacRae, 1977;
Shuford, 1961; Teigen, 1973; Tversky & Fox, 1995; Varey et a.,
1990). Generally, researchers present different auditory or visual
stimuli and ask participants to estimate the proportion of a target
stimulus. Most researchers have found an inverse ogival relation
(inverted S-shaped curve) between the reported and actual propor-
tions, in which participants overestimate proportions below 50%
and underestimate proportions above 50% (for a review, see Hol-
lands & Dyre, 2000).

A frequently used procedure for investigating proportion esti-
mation is the judgment task. In the judgment task, participants are
presented with two stimuli and are asked to judge the proportion of
one stimulus in relation to the total set of stimuli. Varey et al.
(1990) provided atypica example. Varey et al. created 36 differ-
ent displays of randomly placed black and white dots, in which the
proportion of white dots ranged between 1.6% and 50%. Varey et
al. varied the absolute number of black and white dots in the
displays so the absolute and relative frequencies of the target were
not confounded. Participants estimated the percentage of white
dots, the percentage of black dots, the difference between black
dots and white dots, and the ratio of black dots to white dots. The
data revealed the inverse ogival error pattern found in the earlier
studies, demonstrating the robustness of this pattern in proportion
estimation.
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Although the judgment task can be used to demonstrate the
pattern of estimation error, alone it cannot revea the source of that
error. In an earlier study, Brooke and MacRae (1977) attempted to
determine the source of the inverse ogival error pattern. In the first
part of their study, participants were presented displays containing
100 horizontal and vertical lines and were asked to estimate the
proportion of horizontal to total lines (i.e., ajudgment task). In the
second part of their study, participants were shown numerical
proportions and were asked to produce displays of horizontal and
vertical lines that represented those proportions (termed a produc-
tion task). The proportions used in both experiments ranged from
10% to 90%, in multiples of 10%. The researchers explained that
if the inverse ogival error pattern were due to a response bias, the
patterns for the judgment and production tasks would be similar. If
the inverse ogival error pattern were due to a perceptual bias, the
patterns for the judgment and production tasks would be inversely
related (i.e., inverse ogival vs. ogival). The datareveaed inversely
related patterns, leading Brooke and MacRae to conclude that a
perceptual bias was the source of the inverse ogival error pattern.

Typicaly, perceptual biases follow Stevens's Power Law
(Stevens, 1986). Stevens's Power Law states that the perceptual
magnitude of astimulus, W, isafunction of physical magnitude, ¢,
taken to a power, B:

¥ = k¢F, (€

where k is afunction of the units of measurement and 8 “serves as
a signature that may differ from one sensory continuum to an-
other” (Stevens, 1986, p. 13). Spence (1990) showed that a variant
of Stevens's Power Law can model the inverse ogival error pattern
generaly found in proportion judgment tasks. Spence proposed
that participants estimate the magnitude of both proportions in the
display (P and Q) and that participants constrain their estimates to
ensure these quantities sum to 1. On the basis of this supposition,
Spence derived a model of proportion estimation (termed the
power model by Hollands & Dyre, 2000), which states that the
perceptual magnitude of a proportion, W, is a function of the
proportion, ¢, and its inverse, 1— ¢:

V= ¢PI[(dF) + (1 — ¢)*]. @)
Spence (1990) showed that the power model successfully de-
scribes the inverse ogival error pattern present in participants
estimates of a variety of stimuli.

Hollands and Dyre (2000) generalized the power model to
accommodate data with multiple ogival cycles. Hollands and Dyre
proposed that people judge proportions in comparison with refer-
ence points. The single-cycle inverse ogiva pattern results when
people use 0 and 1 as reference points (Spence, 1990). Hollands
and Dyre suggested that people can and do adopt reference points
other than 0 and 1. Hollands and Dyre formalized this theory in
their cyclical power model.

Although several studies have demonstrated the robustness of
the inverse ogival error pattern in proportion estimation, these
experiments have only examined proportions between 1% and
99%. It is unclear whether the biases associated with estimating
these values would generalize to more extreme values (e.g., less
than .01).

On Physical Stimuli and Numerical Responses

The articles discussed earlier focused on perceptual mechanisms
(i.e., errorsin perceiving the stimulus) as the source of the biasin

proportion judgment. Although there is undoubtedly a perceptual
component, there is aso likely a cognitive component (i.e., errors
in associating a number with an amount and vice versa). Shepard
(1981) addressed this issue in his discussion of the information
inherent in participants' estimates of magnitude. Shepard stated
that the transformation from stimulus to response occurs in two
stages. In the first stage, the physical stimulus is transformed into
a psychological experience of the stimulus, termed the stimulus
transformation function:

W= fy( d)) - ©)

In the second stage, the psychological experience of the stimulus
istransformed into aresponse, termed the response transformation
function. When the response is a number (#), the response trans-
formation function may more specifically be termed a numerical
transformation function:

# = (V). (4)

Because researchers only have access to a participant’s re-
sponse, it is not possible to assess either of the two functions in
isolation. Therefore, the function describing the relation between a
participant’s numerical response and the physical stimulus is the
combined stimulus and numerical transformation functions:

#=9(¢), ®)

where g = fyfs.

Although one cannot assess either function in isolation, one can
extract some information about each function by simultaneously
fixing one function (e.g., fg) and manipulating the other function
(e.g., fy). For example, one can present two groups of participants
the same stimulus and ask each group to respond with a different
numerical format. Because the same stimulus is presented to al
participants, the stimulus transformation function is fixed. There-
fore, if participants responses differ as a function of numerical
format, one can conclude that the difference is the result of
different numerical transformation functions. The greater the effect
of numerical format, the greater the impact of the numerical
transformation functions.

Although it is possible to experimentally assess the impact of fy
and fg, psychology researchers have tended to assume that there is
little or no effect of fy (i.e, fy, = 1). Recent data, however, cast
doubt on that assumption. Sedimeier and Gigerenzer (2001) pro-
posed that the degree to which people understand numerical labels
depends on the type of label used. They argued that humans are
“tuned” to process amount information expressed as relative fre-
quencies (e.g., 1 in X) in the same way that calculators are tuned
to process amount information expressed in Arabic base 10 format.
When amount information is expressed in a format other than
relative frequencies (e.g., decimal format), humans will fail to
process the amount information accurately. Sedimeier and Giger-
enzer (2001) and Gigerenzer and Hoffrage (1995) supported their
clams by demonstrating that participants engage in accurate
Bayesian reasoning when amount information is expressed as
relative frequencies but they fail at Bayesian reasoning when
amount information is expressed in decimal format. Prior research
assessed Bayesian reasoning using decimal format and, based on
the implicit assumption that fy, = 1, concluded that humans were
inherently poor Bayesian reasoners (for areview, see Sedimeier &
Gigerenzer, 2001). Gigerenzer and his colleagues have shown that
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effective Bayesian reasoning depends on fy,, not inherent reasoning
abilities.

On Numerical Formats and Quantity Representations

Understanding the relation between f, and different numerical
formats is aso central to the assessment of how numbers are
represented in the human brain. Specificaly, the variability of fy
as a function numerical format likely arises because amount in-
formation is not inherent in numerical labels. Numerical labels are
an element of language, therefore any relation between these labels
and amount information must be indirect. This suggests that there
exists a language-independent abstract representation of amount
(termed a quantity representation).

Recent neuroimaging research supports the existence of a quan-
tity representation. Using afunctional magnetic resonance imaging
technique, Dehaene, Spelke, Pinel, Stanescu, and Tsivkin (1999)
showed that quantity representations are processed in visuospatial
networks of the left and right parietal |obes, whereas numerical
labels are processed in the “left inferior frontal circuit also used for
generating associations between words’ (p. 973). That is, numer-
ical labels are processed in areas of the brain connected with
language, and activation of these areas by numerica labels does
not automatically activate the visuospatial areas of the brain that
represent quantity. These findings have been supported in tests
using positron emission tomography (Dehaene et al., 1996) and by
examining brain-damaged patients (L. Cohen, Dehaene, Chochon,
Lehericy, & Naccache, 2000).

The identification of a brain area associated with a quantity
representation may lead one to conclude that a single representa-
tional format exists to which al numerical labels, regardiess of
format, link. McCloskey, Caramazza, and Basili (1985) accepted
this hypothesis and proposed that this single quantity representa-
tion mediates all numerical comprehension, production, and com-
putational processes (see aso McCloskey, 1992). That is, people
do not understand, produce, or manipulate numbers without acti-
vating this quantity representation.

Support for a single quantity representation is provided by
experiments that assess whether different numerical formats show
the same pattern of results in number comparison tasks. For
example, when participants are asked to determine which of two
simultaneously presented numbers is numerically larger, thereisa
monotonically decreasing function relating reaction time (RT) and
the numerical distance between the two numbers (termed the
numerical distance effect; Moyer & Landauer, 1967). The numer-
ical distance effect has been found with verba (e.g., “two”; De-
haene & Akhavein, 1995; W. Schwarz & Ischebeck, 2000), Arabic
(e.g., “2"; Dehaene & Akhavein, 1995; W. Schwartz & |schebeck,
2000), and Japanese kanji and kana numerals (Takahashi & Green,
1983). Furthermore, Buckley and Gillman (1974) provided evi-
dence that the same process underlies the comparison of Arabic
numerical labels and the comparison of dots. Finaly, W. Schwarz
and Ischebeck (2000) demonstrated that sequential priming of
early visual processing, the lexicon, and the phonological repre-
sentation resulted in predictable reductionsin RT. The similarity of
results across numerical formats provides indirect evidence that
verbal, Arabic, Japanese kanji and kana numerals, and displays of
dots share a common quantity representation.

In contrast to McCloskey’s (1992) model, Gonzalez and Kolers
(1982) proposed that different numerical formats are associated

with different quantity representations. Gonzalez and Kolers pre-
sented an experiment in which they asked participants to verify the
sum of two numbers (a + b = c). Each of the three numbersin the
equation was either an Arabic or Roman numeral. They examined
how the number of Roman numerals in the equation related to the
function relating RT to the minimum addend (and the sum
squared). If Arabic and Roman numerals share a representation,
but participants find it more difficult to recover the representation
when prompted with a Roman numeral, then the number of Roman
numerals will only affect the intercept of the function. If Arabic
and Roman numerals are associated with different representations,
then it islikely (though not guaranteed) that the number of Roman
numerals will affect the slope of the function. The results showed
that as the number of Roman numerals in the equation increased,
the dlope relating RT to the minimum addend (and the sum
squared) increased, suggesting that Arabic and Roman numerals
are associated with different quantity representations (but see
Sokol, McCloskey, Cohen, & Aliminosa, 1991). Gonzalez and
Kolers (1982) stated that the two numerical formats may not share
a common quantity representation because the different numerical
formats restrict the way in which amount information can be
represented. Gonzalez and Kolers further suggested that the quan-
tity representation associated with one numerical format may be
inaccessible to that associated with another numerical format.

The relation between f and different numerical formats can
address the validity of the McCloskey model and the Gonzalez and
Kolers model. Whereas both the M cCloskey model and the Gonza-
lez and Kolers model permit f, to vary as a function numerical
format, the two models differ in their predictions concerning the
conversion from one numerical format into another. The McClos-
key model posits that when one converts from Format A to Format
B, onefirst associates Format A with a quantity representation and
then associates this same quantity representation with Format B. If
we use Shepard’s (1981) notation, then the conversion from For-
mat A to a quantity representation would be the inverse numerical
transformation function for Format A,

¥ = fua(#a). (6)

The conversion from that quantity representation to Format B
would be the numerical transformation function for Format B,

#B = fNB(q,)- (7)

Therefore the bias associated with the conversion between the
two numerical formats should be a combination of the individua
biases,

#g = fus( fl;i(#A))- (8)

This hypothesis cannot be assessed with a point prediction
because one does not have access to the numerical transformation
functions in isolation. However, if one measures #; = g(¢) (i.e,
the judgment task using Format B) and ¢ = g*(#,) (i.e., the
production task using Format A), one can assess whether a par-
ticipant’s conversion data can be reasonably fit within the con-
straints of Equation 8.

In contrast to the McCloskey model, the Gonzalez and Kolers
model posits that each numerical format is associated with a
different quantity representation, and these quantity representa-
tions may be inaccessible to one and other. If the two quantity
representations are inaccessible to one and other, a nonanalog
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process (e.g., rule-based) must be used to convert between the
numerical formats.* Because no quantity representation isinvolved
in the conversion process, (a) the bias associated with converting
one numerical format into another cannot be predicted from the
biases associated with each numerical format, and (b) participants
may not notice if the nonanalog process that they use to convert
between the two numerical formats is outrageously incorrect.
Therefore, the McCloskey model and the Gonzalez and Kolers
model make qualitatively different predictions concerning the con-
version between two numerical formats.

In the present article, we assess the perceptual and cognitive
biases associated with estimating very low proportions using rel-
ative frequencies and decimals. Furthermore, we use the estimates
of these biases to assess whether comprehension and production of
very low proportions are mediated by a single quantity represen-
tation. In Experiment 1, we presented participants with proportions
represented by displays of dots and asked them to estimate those
proportions in either relative frequency or decimal format (i.e., a
judgment task). Experiment 1 provides an estimate of the com-
bined stimulus and numerical transformation function, g(¢), for
both decimals and rel ative frequencies. Because participantsin the
decimal and relative frequency conditions view the same stimuli,
the stimulus transformation function should be fixed. Therefore, if
o(¢) differs by numerical format, the difference can be ascribed to
different numerical transformation functions. In Experiment 2, we
presented participants with proportions in relative frequency or
decimal format and asked them to create displays of dots that
represent the presented proportions (i.e., a production task). Ex-
periment 2 provides an estimate of the inverse combined stimulus
and numerical transformation function, g*(#), for both decimals
and relative frequencies. Again, if g(#) differs by numerical
format, the difference can be ascribed to different numerical trans-
formation functions. In Experiments 3 and 4, we varied the total
number of dots in the judgment and production tasks. Experi-
ments 3 and 4 assessed whether g(¢) and g'(#) change as the
number of dots in the display changes. If there is an effect of
number of dots within each numerical format condition, the effect
can be ascribed to different stimulus transformation functions.
Finally, in Experiment 5, we asked participants to convert from
relative frequencies to decimals and vice versa. If the participants’
conversion strategies are analog based and fit within the con-
straints of Equation 8, the data will provide confirming evidence
for the McCloskey model. If the participants conversion strategies
are nonanalog and incorrect, the data will provide confirming
evidence for the Gonzalez and Kolers model. To efficiently de-
scribe the estimation process, we discuss the individual and com-
bined results of these five experiments in the General Discussion.

Experiment 1

Experiment 1 investigated how people estimate proportions
between .0001 and .01. We assessed g(¢) for decimals and relative
frequencies by presenting participants displays of black and white
dots and asking them to label the proportion of white dots to total
dots using either decimals or relative frequencies (depending on
condition). Because of the relatively robust evidence that gender-
specific effects are found in spatial and mathematical reasoning
tasks (for a review, see Hyde & McKinley, 1997), we included
gender as a variable.

Method

Participants. Data were collected from 80 introductory psychology
students enrolled at a midsized university in the southeastern United States.
Volunteers were unaware of the purpose of the experiment and received
class credit for participation. Forty participants were women and 40 par-
ticipants were men.

Apparatus. All stimuli were presented on a 13-in. (33-cm) VGA color
monitor with a60-Hz refresh rate controlled by an 80486 microcomputer using
the DOS operating system. The resolution of the monitor was 1024 X 768.

Simuli. The term display used throughout the article refers to the
stimuli of black and white dots against a uniform background. Each display
filled a 13-in. (33-cm) computer monitor screen with a visua angle
of 24.6°. Each display consisted of 50,000 dots scattered randomly on the
computer screen. The dots were white or black on ared background. These
colors were used because the contrast enabled participants to easily see
each element on the screen. The proportion of white to total dots in each
display was randomly drawn from a uniform distribution of proportions
ranging from .0001 to .01.

A response screen was presented to participants after each display. The
response screen instructed participants to type in their estimates of the
proportion of white to total dots in the previous display. Participantsin the
decimal condition were asked to respond in decimals, and participants in
the relative frequency condition were asked to respond in relative frequen-
cies (i.e., 1in X). The participant’s response was presented in the center of
the screen, and the numbers subtended a vertical visua angle of 1.33°.
There was a 10-s delay between the end of the previous trial and the
presentation of the next display (because of the computer generating the
display for the next trial).

Procedure. Participants were randomly assigned to one of two re-
sponse type conditions: decimals or relative frequency. Participants were
tested individually.

Each trial consisted of the presentation of a display, the participants
estimation of the proportion of white dots to total dots in the displays, and
a chance for the participants to check their response. Participants viewed
the display of dots for 3 s, with the black dots appearing on the screen for
1 s before white dots. The black dots appeared first to allow participants to
visually focus (i.e., accommodate) on the dots on the screen. The white and
black dots were then presented together for 2 s. This 2-sdisplay enabled the
participants to clearly perceive the dots but prohibited them from counting
the dots. Participants were not told the total number of dots, and a new
random display was generated for each tria to prohibit participants from
recognizing patterns.

After the display was presented, the response screen appeared. The
response screen instructed participants to estimate the proportion of white
dots to total dotsin the previous display. Participants used the keyboard to
respond either in relative frequency or decimal format, depending on their
assigned condition. For participants in the relative frequency condition, the
words“1in” were provided, and participantsfilled in the rest of therelative
frequency with a whole number. For example, if participants estimated the
proportion to be 1 in 100, participants would typein “100.” For participants
in the decimal condition, the participants typed a decimal between 0 and 1.
After participants responded, they were shown the number they had entered
and were asked if this proportion was the number they wanted to use as
their estimate of the proportion of white dots. Participants pressed the “y”
key to indicate that they had entered their estimate correctly or the “n” key

1 Nonanalog strategies have been discussed in the numerical repre-
sentation literature (e.g., Campbell, 1994; Dehaene & Akhavein, 1995;
Dehaene et al., 1996). This literature addresses the question of whether
people can use numerical labels without accessing a quantity represen-
tation. Examples of such strategies are using memorized multiplication
tables, using mathematical “tricks,” and converting between numerical
formats through memorized associations rather than through quantity
representations.
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to indicate that they had not entered their estimate correctly. If participants
pressed the “n” key, they were asked for their estimate again. If participants
pressed the “y” key, they proceeded to the next trial.

The sessions consisted of 10 practice trials and 150 experimental trials.
After every 32 experimental trials, participants were given a self-timed rest
period. Each session lasted approximately 50 min. The computer recorded
participants' estimates.

Results

When plotted with the presented proportions on the x-axis and
estimates on the y-axis, each participant’s data evidenced a distinct
curve. Exploratory analysis revealed that a log-log transformation
best linearized the data (i.e., a power function). We therefore fit a
regression line to each participants' log-log transformed data (for
an example of atypical participant in each condition, see Figures
1 and 2). To assess whether the power function was the most
appropriate transformation, we compared the amount of variance
accounted for (i.e., r?) by these power functions with the amount
of variance accounted for by three reasonable aternatives: (a) the
untransformed data, (b) Spence's (1990) power model, and (c)
Hollands and Dyre's (2000) cyclical power model. When comput-
ing Hollands and Drye's (2000) cyclical power model, we set the
lower-bound reference value to 0 and alowed the upper-bound

Decimal Condition

0.2 1 M

Estimated
Proportion

0 0.002 0.004 0.006 0.008 0.01
Presented Proportion
Relative Frequency Condition
0.2 7
0.15
Estimated o1
Proportion
0.05 M
g = — — e e -
0 0.002 0.004 0.006 0.008 0.01

Presented Proportion

Figure 1. Plots of presented proportion by estimated proportion for a
typica participant in the decima and relative frequency conditions of
Experiment 1. Power functions are fit to the data.
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Figure 2. Log-log plots of presented proportion by estimated proportion
for the participants presented in Figure 1. Linear functions are fit to the
data.

reference value to exist between 0 and 1.2 Finally, we computed a
one-way within-subjects analysis of variance (ANOVA) compar-
ing the r? values of each model. There was a significant effect of
model, F(3, 316) = 27.07, p < .001, MSE = 0.055. Tukey’'s
honestly significance difference (p < .05) revealed that the re-
gression lines fit to the log-log transformed data (i.e., power
function) accounted for significantly more variance (M,2 = 0.56,
SD,2 = 0.22) than the other three models. The amount of variance
accounted for by the cyclica power model (M,2 = 0.34, SD,2
= 0.27) and that of the regression lines fit to the untransformed
data(M,2 = 0.38, SD,2 = 0.26) did not differ significantly but were
significantly higher than the amount of variance accounted for by
the power model (M,2 = 0.23, SD,2 = 0.18). Because the power
functions best fit the data, all further analyses were performed on
the log-log transformed data.

We used the slopes and intercepts of each participant’s function
to examine the degree of over- or underestimation of the presented
proportions. The slope of the log-log transformed data determines
the curvature of the function describing the raw data. A slope
greater than 1 describes an accelerating function (i.e., line that
curves upward), and a slope less than 1 describes a decelerating
function (i.e., alinethat curves downward). The intercept has been
traditionally discarded in magnitude estimation experiments be-

2 We fit both the power model and the cyclical power model using the
multivariate secant iterative method (SAS Institute, 1994).
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cause it is a function of the value of the standard (Stevens, 1986).
However, in a proportion estimation experiment, the intercept
describes, in part, the magnitude of the response. For example, if
the intercept of two otherwise identical functions differs by 1
point, then the predictions of the two functions differ by one order
of magnitude. Therefore, we aso included the intercept as a
dependent variable. Finally, the R? value of each participant was
used as a measure of the consistency of the pattern of each
participant’s estimates.

Means and standard deviations for the dopes, intercepts, and R?
vaues by response type and gender for Experiment 1 are presented in
Table 1. A 2 X 2 between-subjects ANOVA for response type
(relative frequency vs. decimd) by gender was performed on each of
the three dependent variables (i.e., dopes, intercepts, and R values).

There was a significant main effect of response type on slopes,
F(1, 76) = 19.44, p < .001, MSE = 0.31, in which participants
who estimated proportions as decimals had a higher slope than
those estimating proportions in relative frequencies. Distributions
of participants slopes for each response type are presented in
Figure 3. There were no other significant effects on slopes.

There was a sSignificant main effect of response type on intercepts,
F(1, 76) = 35.90, p < .001, MSE = 1.67, in which participants who
estimated proportions as decimals had a higher intercept than those
estimating proportions in relative frequencies. Distributions of partic-
ipants intercepts for each response type are presented in Figure 3.
There were no other significant effects on intercepts.

There was no significant main effect of response type on R?
values, F(1, 76) = 3.62, p = .06, MSE = 0.04. There was a
significant main effect of gender on R® values, F(1, 76) = 7.92,
p = .006, MSE = 0.04, in which female participants R® values
were higher than male participants R® values. There was a sig-
nificant interaction between gender and response type for the R?
values, F(1, 76) = 8.58, p = .005, MSE = 0.04, such that in the
relative frequency condition, male and female participants did not
differ, but in the decimal condition, female participants had higher
R? values than did male participants. The participants average
functions for each response type can be seen in Figure 4.

Discussion

The purpose of Experiment 1 was to examine the relation
between presented proportions between .0001 and .01 and partic-
ipants’ estimates of those proportions. In addition, we investigated
whether gender or response type affected this relation. There were
four important findings. First, in both the relative frequency and
decimal conditions, participants overestimated the very low pro-

Table 1
Means and Standard Deviations of Sopes, Intercepts, and R
Values in Experiment 1 by Response Type and Gender

Slope Intercept R?
Gender and response
type M D M D M D

Male

Decimal 1231 0.639 0.917 1490 0477 0.265

Relative frequency 0.634 0.280 —0.421 0.963 0.523 0.237
Female

Decimal 1.116 0.650 1.728 1204 0.731 0.080

Relative frequency 0.616 0574 —0.39% 1442 0518 0.156

3.0
2.0
Slope 1.0
| :'
0
-1.0
Decimal Relative
Frequency
Response Type
6.0
4.0
2.0
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0
2.0
-4.0
Decimal Relative
Frequency
Response Type

Figure 3. Box plots of the slopes and intercepts in the decima and
relative frequency conditions of Experiment 1.

portionsin the displays. Second, the relation between the presented
proportions and participants' estimates was shown to be a power
function. Third, although participants using the two response types
viewed the same stimuli, each response type was associated with
a different pattern of error. Finally, there was no effect of gender.
We discuss the possible causes and implications of these patterns
in the General Discussion.®

Experiment 2

Experiment 2 was designed to assesses g(#). Whereas in Exper-
iment 1 participants were asked to label the proportion of white dots
to total dots in a display, in Experiment 2 participants were given a
proportion expressed as a decimal or relative frequency and were
asked to produce a display in which the proportion of white dots to
total dots matched the presented proportion. If participants’ estimates
are only affected by stimulus and numerical transformation functions,

3 Because the R? results indicated that al of the participants’ responses
were well described by the regressions, the interaction between gender and
response type for the R? values has no important impact on the interpre-
tation of participants’ estimates. We therefore do not discuss them further.
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Figure 4. The best fit functions of estimated proportions, or f(presented proportions), for participants in the
decimal and relative frequency conditions of Experiment 1. These functions were calculated using the average
slope and intercept across participants and are plotted on raw scales so the curvature of the functions can be seen.

Also included is the identity line (i.e., slope = 1.0).

then the results of Experiments 1 and 2 should be inversely related. If
the results of Experiments 1 and 2 are not inversely related, then it is
likely that participants estimates are influenced by a response bias
(see Brooke & MacRae, 1977). Finally, we examined gender differ-
ences in Experiment 2, athough no gender differences were found in
Experiment 1.

In Experiment 2 we also included a condition in which partic-
ipants simply produce a display to match the presented display.
The display condition in the present experiment can be character-
ized by sequential application of the stimulus transformation func-
tion, ¥ = f4(¢), and the inverse stimulus transformation function,
¢ = fgH(W). That is,

¢ = T5'(fs(9)). C)

Therefore, any deviation from accuracy can be attributed to other
unidentified effects, such as memory.

Method

Participants. One hundred and twelve participants were drawn from
the same population as in Experiment 1. Volunteers received class credit
for participation. Sixty-five participants were women and 47 participants
were men.

Stimuli. The rooms and computers used in this experiment were the
same as those used in Experiment 1. On each tria, participants were
presented with a proportion expressed as adecimal, arelative frequency, or
adisplay. The proportions were randomly drawn from a uniform distribu-
tion ranging from .0001 to .01. The decimal and relative frequency pro-
portions were centered on the computer screen, and the numbers subtended
avertical visual angle of 1.33°. The displays in the display condition were
identical to those used in Experiment 1.

After the proportion was removed, participants were presented a response
screen consisting of 50,000 black dots. These displays were generated in the
same way asin Experiment 1, with the exception that they contained no white
dots. Participants adjusted the proportion of white dots in the display by
pressing number keys on the keyboard of the computer. The “3” key added 1
white dot, the “6” key added 10 white dots, and the “9” key added 100 white

dots. The “1” key removed 1 white dot, the “4” key removed 10 white dots,
and the “7" key removed 100 white dots. Each white dot added to the display
replaced a random black dot in the display (and vice versa) so that the total
number of dots remained the same in each trial.

Procedure.  Participants were randomly assigned to one of three pre-
sentation types: decimals, relative frequencies, or displays. Participants
were tested individually.

In each trial, participants were presented with a proportion expressed as
a decimal, a relative frequency, or a display of black and white dots (as
previously described). This proportion was presented for 3 s. After the
proportion was removed, there was a 10-s delay before the response screen
was presented. The response screen consisted of 50,000 black dots (as
previously described). Participants were asked to manipulate the amount of
white dots in the response screen so the proportion of white to total dots
equaled the previously presented proportion. Participants manipulated the
amount of white dots in each display by pressing number keys on the
number pad, as previously described. Participants were not told the exact
number of white dots that were added or subtracted by each key press.
Instead, the amounts were expressed as “small,” “moderate,” and “large”
amounts. Participants pressed the Enter button to indicate that they be-
lieved the proportion of white dots in their display matched the presented
proportion.

The sessions consisted of 10 practice trials and 150 experimental trials for
each participant. During the experimenta trids, participants were given a
self-timed rest period after every 32 tridls. Each session lasted approxi-
mately 50 min. The computer recorded the proportions created by participants.

Results

As in Experiment 1, each participant’s data were transformed
and plotted on a log-log scale* (for an example of a typical

4 The paired sample t test revealed that the regression lines fitted to the
transformed data accounted for significantly more variance (M,2 = 0.63,
D, 2 = 0.23) than the regression lines fitted to the raw data (M,2 = 0.44,
D,2 = 0.25), t(101) = 10.25, p < .001. In addition to linearizing the data,
the log-log transformation permits the data from Experiment 2 to be easily
compared with that of Experiment 1.
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Figure5. Log-log plots of presented proportion by estimated proportion for atypical participant in the decimal,
relative frequency, and display conditions of Experiment 2. Linear functions are fit to the data.

participant in each condition, see Figure 5). A regression line
was fit to each participant’s data, and the slope, intercept, and
R? value of each participant’s function were used as dependent
variables. Ten participants were excluded from the data analysis
because their data indicated they were using a strategy that was
very different from the majority of the participants. Responses
for 4 of these participants were negatively related to the pre-
sented proportions. Five of these participants showed no sys-
tematic pattern of estimating proportions in relation to the
presented proportions and had R® values less than .08. Data
from 1 participant were excluded because he or she changed

estimation strategies during the experiment.® Of the remaining
102 participants, 59 were women and 43 were men. To reduce

5 When viewing the data from this participant, one can see two distinct

lines. Onelineisthe result of Trials 1-73, and the second line is the result
of Trials 74—150. This finding shows that this participant changed strate-
gies a Trial 74. Because the data could not be characterized well by a
linear regression, the data were removed.
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Table 2

Means and Standard Deviations of Sopes, Intercepts, and R® Values in Experiment 2 by

Presentation Type

Slope Intercept R?
Presentation type n M D M D M D
Decimal 35 0.796 0.371 -0.375 1.095 0.589 0.282
Relative frequency 34 1.023 0.462 0.270 1.143 0.638 0.212
Display 33 0.783 0.186 —0.481 0.466 0.675 0.193

noise in the data, we did not include the first 35 trials for each
participant in the data analysis.®

Means and standard deviations for slopes, intercepts, and R®
values for the presentation types in Experiment 2 are shown in
Table 2. A 3 X 2 between-subjects ANOVA for presentation type
by gender was performed on each of the three dependent variables
(i.e., slopes, intercepts, and R? values).

There was a significant main effect of presentation type on
slopes, F(2, 96) = 4.77, p = .011, MSE = 0.13 (see Figure 6). A
Tukey’s post hoc analysis revealed that the slopes of participants
who were presented with relative frequencies were higher than the
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1.5
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-0.5 ——]
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Relative
Frequency
Presentation Type

Decimal Display

Figure 6. Box plots of the slopes and intercepts in the decimal, relative
frequency, and display conditions of Experiment 2.

slopes of participants who were presented with decimals (p < .05)
or displays (p < .05). There was no significant difference between
the decimal condition and the display condition (p > .05). There
were no other significant effects on slopes.

There was a significant main effect of presentation type on
intercepts, F(2, 96) = 6.08, p = .003, MSE = 0.93 (see Figure 6).
A Tukey’s post hoc analysis showed that the intercepts of partic-
ipants who were presented with relative frequencies were higher
than the intercepts of participants who were presented with deci-
mals (p < .05) or displays (p < .05). Again, there was no
significant difference between participants in the decimal condi-
tion and the display condition (p > .05). There were no other
significant effects on intercepts. There were no significant effects
on R? values.

To determine if the results of Experiment 2 were the inverse of
Experiment 1, we calculated the inverse functions for each partic-
ipant in Experiment 1. The slopes and intercepts of these inverse
functions were compared with the slopes and intercepts of partic-
ipants in Experiment 2 using an independent t test. The means and
standard errors for the slopes and intercepts of the decimal and
relative frequency conditions in Experiment 2 and the inverse
functions of Experiment 1 are presented in Table 3. For the
decimal conditions, the slopes of the inverse functions of Exper-
iment 1 were significantly higher than the slopes of Experiment 2,
t(73) = 2.85, p = .006, and the intercepts of the inverse functions
of Experiment 1 were significantly lower than the intercepts for
Experiment 2, t(73) = —2.94, p = .004. For the relative frequency
conditions, the slopes of the inverse functions of Experiment 1
were significantly higher than the slopes of Experiment 2,
t(72) = 3.55, p < .001, and the intercepts of the inverse functions
of Experiment 1 were marginaly significantly different from the
intercepts for Experiment 2, t(72) = 1.97, p = .052. Thus, the
functions obtained in this experiment were not the inverse of those
found in Experiment 1. Although the classical inverse pattern was
not shown, there is some evidence that opposing processes are
involved in Experiments 1 and 2. Specifically, for both the decimal
and relative frequency conditions, the functions from Experiment 2
are curved in opposite directions as the functions from Experi-

6By removing the first 35 trials for each participant, 65% of the
participants R? values increased. The mean absolute value change for
participants whose values increased (M = .088, SD = 0.012) changed
significantly more than for participants whose values decreased (M = .037,
SD = 0.004), t(101) = 7.60, p = .002. The average R® value after the
first 35 trials were removed was .62 compared with the previous average
R? value of .58. When the first 35 trials are included in the analyses, pattern
of data does not change.
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Table 3
Means and Standard Errors of Sopes and Intercepts for
Experiment 2 and the Inverses of Experiment 1 by Condition

Slope Intercept
Condition M SE M SE

Decimal

Experiment 1 inverse 1122 0.092 —1.039 0.136

Experiment 2 0.796 0.063 -0.375 0.185
Relative frequency

Experiment 1 inverse 2.048 0.257 1.443 0.522

Experiment 2 1.023 0.079 0.270 0.196

ment 1. The participants average functions for each presentation
type can be seen in Figure 7.

Discussion

Experiment 2 examined how different presentation types (rela-
tive frequency, decimals, and displays) of proportions affected
participants productions of displays representing the proportions.
There were severa important findings. First, participants estimated
proportions differently depending on whether they were presented
proportions in relative frequency or decimal format. Second, al-
though all of the participants produced displays that overestimated
the presented proportions, participants who were presented with
decimals and displays were more accurate than those who were
presented with relative frequencies. Third, the relation between the
presented proportions and the estimated proportions was again a
power function. Fourth, although we had predicted that the results
of Experiment 2 would be the inverse of the results of Experi-
ment 1, the proportions in the displays created by participants in
Experiment 2 were not the mathematical inverses of the estima-
tions in Experiment 1. Finally, there was no effect of gender.

0.018 -

0.015 -

0.012 -

Estimated
Proportions 0.009

0.006

0.003 +

If participants’ estimates were only affected by stimulus and
numerical transformation functions, then the results of Experi-
ments 1 and 2 would be inversely related. The fact that the results
of Experiments 1 and 2 were not inversely related suggests that
participants' estimates are influenced by a response hias, which is
revealed by participants’ overestimation in both Experiments 1
and 2 (Brooke & MacRae, 1977). This result underscores that
participants biases are revealed only in the combined judgment
and production results. Comparisons of the patterns found in
Experiments 1 and 2 are discussed in the General Discussion.

The finding that participants’ estimates were relatively accurate
in the display condition suggests that there is little influence of
unidentified effects such as memory. The finding that participants’
estimates in the decimal condition were relatively accurate, how-
ever, does not suggest that the stimulus and numerical transfor-
mation functions for decimals are negligible. Such a conclusion
requires the assumption that participants' estimates are only af-
fected by stimulus and numerica transformation functions. Our
results refute this assumption. Instead, our results suggest that the
response bias offsets the effects of the stimulus and numerical
transformation functions in the decimal condition of the produc-
tion task (see General Discussion).

Experiment 3

In Experiment 3, we assess whether participants’ estimates vary
as a function of the total number of dots on the screen. If there is
an effect of number of dots on g(¢) within each numerical format
condition, the effect can be ascribed to different stimulus transfor-
mation functions. Here, we present the participants with a judg-
ment task identical to Experiment 1, with two exceptions: (a) We
varied the number of dots on the screen randomly between 500
and 50,000, and (b) we presented only three different proportions
(.002, .02, and .2). By assessing these functions for three different
proportions, we can determine whether the relation between the
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Figure 7. The best fit functions of estimated proportions, or f(presented proportions), for participants in the
decimal, relative frequency, and display conditions of Experiment 2. These functions were calculated using the
average slope and intercept across participants and are plotted on raw scales so the curvature of the functions can
be seen. Also included is the identity line (i.e., slope = 1.0).
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total number of dots and participants' estimates of low proportions
(.02 and .002) is qudlitatively different from the relation between
the total number of dots and participants estimates of high pro-
portions (.2). Finaly, because there were no effects of gender in
Experiments 1 and 2, we dropped gender as a variable.

Method

Participants. Data were collected from 80 introductory psychology
students drawn from the same population as in Experiment 1. Volunteers
received class credit for participation.

Apparatus. All of the stimuli were presented on a17-in. (43-cm) VGA
color monitor with a 75-Hz refresh rate controlled by a Pentium micro-
computer using the DOS operating system. The resolution of the monitor
was 1024 X 768.

Simuli. The displays were identical to Experiment 1 with the follow-
ing three exceptions. First, the proportion of white to total dots was
randomly chosen from one of three values: .002, .02, and .2. Second, the
total number of dots on the screen was randomly chosen from a uniform
distribution ranging from 500 to 50,000 dots, with the constraint that the
total number of dots was evenly divided by the proportion presented.
Finally, the display background was gray.

Procedure. Participants were randomly assigned to one of two re-
sponse type conditions: decimals or relative frequency. The procedure was
identical to that of Experiment 1.

Results

Each participant’s data were transformed and plotted on a log-
log scale. For each participant’s data, a regression line assessing
the relation between the participant’ s estimate and the total number
of dots on the screen was fit for each presented proportion. The
slope, intercept, and R value of each participant’s function were
used as dependent variables. Importantly, the R? values from these
functions (M = .10, SD = .126) were equivaent to functionsfit to
the untransformed data (M = .105, SD = .12). The likely reason
for thisis that the participants’ estimates are not well predicted by
the total number of dots on the screen. Therefore, we present the
analyses from the untransformed data.

Means and standard deviations for slopes, intercepts, and R?
values for the presentation types in Experiment 3 are shown in
Table4. A 3 X 2 mixed-subjects ANOVA for presented proportion
by response type was performed on each of the three dependent
variables (i.e., slopes, intercepts, and R? values).

Table 4
Means and Standard Deviations of Sopes, Intercepts, and R?
for Presented Proportion by Response Type for Experiment 3

Slope Intercept R?
Condition M D M D M D
Decimal
.002 0.0000003 0.0000008 .05 .04 .05 .08
.02 0.0000006 0.0000002 .15 .08 .09 .10
2 0.000005 0.0000006 41 .14 20 .15
Relative
frequency
.002 0.000000003  0.000002 05 1 08 1
.02 —0.0000004 0.0000007 .08 .05 .05 .05
2 0.000003 0.000003 30 17 12 13

There was a significant main effect of presentation proportion
on slopes, F(2, 156) = 46.8, p < .001, MSE = 4.3E-10. A Tukey’'s
post hoc analysis revealed that the slopes were higher when
participants estimated a proportion of 0.2 than when they estimated
a proportion of 0.02 (p < .05) or 0.002 (p < .05). There was no
significant difference between proportions of 0.02 and 0.002 (p >
.05; see Figure 8). There was a significant main effect of response
typeon slopes, F(1, 78)= 6.92, p = .01, MSE = 6.7E-11, such that
the slopes of participants who responded using relative frequencies
were lower than the slopes of participants who responded using
decimals. There was no significant interaction between presented
proportion and response type on slopes.

There was a significant main effect of presentation proportion
on intercepts, F(2, 156) = 229.1, p < .001, MSE = 2.05. A
Tukey’s post hoc analysis revealed that the intercepts were higher
when participants’ estimated a proportion of 0.2 than when they
estimated a proportion of 0.02, which in turn were higher than
when they estimated a proportion of 0.002. There was a significant
main effect of response type on intercepts, F(1, 78) = 14.24, p <
.001, MSE = 0.023, such that the intercepts of participants who
responded using relative frequencies were lower than the inter-
cepts of participants who responded using decimals. There was a
significant interaction between presented proportion and response
type on intercepts, F(2, 156) = 7.26, p = .001, MSE = .065. A
Tukey's post hoc analysis revealed that, as presented proportion
increased, the intercepts of participants in the decimal condition
becameincreasingly larger than the intercepts of participantsin the
relative frequency conditions.

There was a significant main effect of presentation proportion
on R?, F(2, 156) = 28.43, p < .001, MSE = 0.23. A Tukey’s post
hoc analysis revealed that the R? values were higher when partic-
ipants were presented with a proportion of 0.2 than when they were
presented with a proportion of 0.02 (p < .05) or 0.002 (p < .05).
There was no significant difference between proportions of 0.02
and 0.002 (p > .05). There was no significant main effect of
response type on R?. There was significant interaction between
presented proportion and response type on R?, F(2, 156) = 7.82,
p < .001, MSE = 0.063. A Tukey’s post hoc analysis revealed that
the R? for the 0.2 presentation proportion in the decimal condition
was greater than all other R® values.

Discussion

Experiment 3 examined how participants' estimates in a judg-
ment task varied as a function of the total number of dots on the
screen. There were two important findings. First, when the pre-
sented proportion is .2, the participants’ estimates of white to total
dots increased with total number of dots for both the decimal and
relative frequency conditions. But, when the presented proportion
is either .02 or .002, there is little or no effect of the total number
of dots on participants’ estimates. This finding is reflected in both
the slopes and the R? values and indicates that participants esti-
mates are robust over the total number of dots when presented very
low proportions (.02 and .002) but not when presented higher
proportions (.2). Second, participants treated decimals and relative
frequency differently, such that they overestimated when using
decimals more than they did when using relative frequency, and
this difference increased with larger proportions. This finding is
reflected in the intercept data and mimics the major findings of
Experiment 1.
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Figure 8. Plots of the slope, intercept, and R? values from Experiment 3
for the best fit functions of estimated proportions, or f(total number of dots
in the display), for each presentation proportion by response type.

Experiment 4

The results of Experiment 3 demonstrated that the biases asso-
ciated with probability judgment were consistent over total number
of dots for low proportions (.002 and .02) but not for relatively
high proportions (.2). In Experiment 4, we explored whether
probability production is robust over total number of dots. Here,
we presented the participants with a production task identical to
Experiment 2, with three exceptions: (a) We varied the total
number of dots on the response screen randomly between 500
and 50,000, (b) we presented only three different proportions
(.002, .02, and .2), and (c) we assessed only the decima and
relative frequency presentation formats (we did not have a display
condition).

Method

Participants. Data were collected from 80 introductory psychology
students drawn from the same population as in Experiment 1. Volunteers
received class credit for participation.

Apparatus. The apparatus were the same as in Experiment 3.

Simuli. The displays were identical to Experiment 2 with the follow-
ing three exceptions. First, the proportion of white to total dots was
randomly chosen from one of three values: .002, .02, and .2. Second, the
total number of dots on the response screen was randomly chosen from a
uniform distribution ranging from 500 to 50,000 dots, with the constraint
that the total number of dots could be evenly divided by the proportion
presented. Finally, the display background was gray.

Procedure.  Participants were randomly assigned to one of two presen-
tation type conditions: decimals or relative frequency. The procedure was
identical to that of Experiment 2.

Results

Each participant’s data were transformed and plotted on a log-
log scale. For each participant’s data, a regression line assessing
the rel ation between the participant’ s estimate and the total number
of dots on the response screen was fit for each presented propor-
tion. The slope, intercept, and R® value of each participant’s
function were used as dependent variables. The R? values from
these functions (M = .01, SD = .02) were equivalent to functions
fit to the untransformed data (M = .01, SD = .02). Again, the
likely reason for thisisthat the participants’ estimates are not well
predicted by the total number of dots on the response screen.
Indeed, the regressions accounted for only 1% of the variance.
Thus the intercepts, as opposed to the slopes, will carry most of the
information about participants estimates. Again, we present the
analyses from the untransformed data.

Means and standard deviations for intercepts and R* values for
the presentation types in Experiment 2 are shown in Table 5. A
3 X 2 mixed-subjects ANOVA for presented proportion (.2, .02, or
.002) by presentation type (decimal vs. relative frequency) was
performed on each of the three dependent variables (i.e., slopes,
intercepts, and R? values).

There were no significant main effects or interaction on slopes.
Furthermore, the slopes were not significantly different from zero,
t(79) = 0.4, ns.

There was a significant main effect of presentation proportion
on intercepts, F(2, 156) = 41.01, p < .001, MSE = 0.085. A
Tukey's post hoc analysis revealed that the intercepts were higher
when participants were presented with a proportion of .2 than
when they were presented with a proportion of .02 (p < .05)
or .002 (p < .05). There was no significant difference between
proportions of .02 and .002 (p > .05). There was no significant
main effect of presentation type on intercepts. There was a signif-

Table 5
Means and Sandard Deviations of Intercepts and R® for
Presented Proportion by Presentation Type for Experiment 4

Intercept R?
Condition M D M D
Decimal
.002 .05 .08 .01 .01
.02 .05 .07 .01 .01
2 .08 .09 .02 .02
Relative frequency
.002 .06 15 .01 .01
.02 .08 15 .01 .01
2 15 13 .01 .01
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icant interaction between presented proportion and response type
on intercepts, F(2, 156) = 4.33, p = .01, MSE = 0.009. A Tukey’s
post hoc analysis revealed that, as presented proportion increased,
the intercepts of participants in the relative frequency condition
becameincreasingly larger than the intercepts of participantsin the
decimal conditions.

There was a significant main effect of presentation proportion
on R?, F(2, 156) = 3.5, p = .03, MSE = 0.0009. A Tukey's post
hoc analysis revealed that the R? values were higher when partic-
ipants were presented with a proportion of 0.2 than when they were
presented with a proportion of 0.02 (p < .05) or 0.002 (p < .05).
There was no significant difference between proportions of 0.02
and 0.002 (p > .05). There was no significant main effect of
presentation type on R%. There was a significant interaction be-
tween presented proportion and presentation type on R?, F(2,
156) = 3.53, p = .03, MSE = 0.0009. A Tukey’s post hoc analysis
revealed that the R® of the 0.2 presentation proportion in the
decimal condition was greater than all other R® values.

Discussion

Experiment 4 examined how participants' estimates in a pro-
duction task varied as a function of the total number of dots on the
response screen. There were two important findings. First, there
was no effect of total number of dots on participants’ estimates.
This finding is reflected in both the slopes and the R* values and
indicates that participants’ estimatesin a production task are robust
over the total number of dots on the response screen. Second,
participants treated decimals and relative frequency differently,
such that they overestimated when making displays from relative
frequencies more than they did when making displays from deci-
mals, and this difference increased with larger proportions. This
finding is reflected in the intercept data, and it mimics the major
findings of Experiment 2.

Experiment 5

Experiment 5 is an attempt to determine whether relative fre-
quencies and decimals share a single quantity representation that
mediates all judgment and production processes (e.g., McCloskey,
1992). If relative frequencies and decimals share a single quantity
representation that mediates judgment and production processes,
then the bias associated with the conversion between the two
numerical formats should be predicted by Equation 8. If relative
frequencies and decimals do not share a single quantity represen-
tation that mediates judgment and production processes, then the
bias associated with the conversion between the two numerical
formats should be unpredictable. To test these predictions, in
Experiment 5 we asked participants to convert relative frequencies
to decimals and vice versa.

Method

Participants. Data were collected from 112 participants drawn from
the same population as in Experiment 1. Eighty-two participants were
women and 30 participants were men.

Procedure.  Participants were randomly assigned to one of two condi-
tions: relative frequency or decimals. Participants were tested individualy.
The same rooms and computers used in the previous experiments were
used here.

In one condition, participants were presented a proportion expressed in
decimal format and were asked to reexpress that proportion in relative
frequency format. In the other condition, participants were presented a
proportion expressed in relative frequency format and were asked to
reexpress that proportion in decimal format. The presented proportions
were identical to those of the decimal and relative frequency conditionsin
Experiment 2. The response screen immediately followed the presented
proportion. The response screens were identical to those used in Experi-
ment 1. Each session consisted of 150 experimental trials (there were no
practice trials). Participants were given arest period after every 42 trials.
Each session lasted approximately 20 min. The computer recorded partic-
ipants' responses.

Results

Each participant’s data were transformed and plotted on a log-
log scale. Because many participants data produced multiple
paralel lines (i.e., lines of equal slope but different intercepts),
only the participants' slopes were used as the dependent variable.
The intercepts were dropped as a dependent variable because they
varied within sessions. R? was dropped as a dependent variable
because the participants’ datawere extraordinarily linear. A typical
participant’s data are presented in Figure 9.

Data from 27 participants were excluded from the data analysis.
Two participants did not complete the experiment. Eighteen par-
ticipants used six different responses for al of the trials (suggest-
ing that they did not follow instructions). Seven participants
showed no patterns in their responses in relation to the presented
proportions. Of the remaining 85 participants, 40 were in the
decimal condition and 45 were in the relative frequency condition.

There were no significant differences between the slopes of
participants who were presented with decimas (M = —0.72,
D = 1.66) and the slopes of participants who were presented with
relative frequencies (M = —0.58, SD = 0.95), t(84) = —0.59, p =
.55. Examination of the participants’ datarevealed that participants
used two different strategies to produce their responses. One
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Figure 9. Log-log plot of a typical participant in Experiment 5 who
incorrectly converted relative frequencies to decimals by using the num-
bersin the presented proportion when making his or her response (see text).
The multiple parallel lines are a result of the participant shifting the
decimal point in his or her responses.
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strategy, used by 15 out of the 85 participants who showed a
pattern of responding, was to attempt to mathematically convert
decimals into relative frequencies or vice versa. Of these 15
participants, 7 were presented with decimals and 8 were presented
with relative frequencies. Participants using this strategy estimated
proportions that were either fairly accurate or differed from the
presented proportion by one or two orders of magnitudes. The
mean slope of the lines produced by using this strategy was 1.09
(SD = 0.57).

In contrast, 70 out of the 85 participants who showed a pattern
of responding produced lines with negative slopes. Of these 70
participants, 33 were presented with decimals and 37 were pre-
sented with relative frequencies. The mean dope of the lines
produced by using this strategy was —1.02 (SD = 0.83). Partici-
pants showing this pattern of responding did not retain the ordinal
structure of the numerical scales.

Discussion

The purpose of Experiment 5 was to assess the biases associated
with converting relative frequencies to decimals and vice versa
The results showed that (a) about 24% of participants did not
complete the experiment properly or showed no relation between
relative frequencies and decimals, (b) about 13% of participants
accurately converted between the two numerical formats, and (c)
about 63% of participants used a strategy that produced a negative
relation between decimals and relative frequencies. These biases
are not predictable from the biases present in Experiments 1 and 2.
The data from Experiments 1 and 2 show that participants retained
the correct ordina relation between both numerical formats and
the visual displays, but the accuracy and reliability of participants
estimates were imperfect. The datafrom Experiment 5 suggest that
the vast mgjority of participants could not retain the correct ordinal
relation when converting between relative frequencies and
decimals.

When we compared the presented proportions with the esti-
mated proportions, we found that the participants whose data
showed a negative relation used the numbers in the presented
proportions in their responses. For example, if participants were
presented with “.0074,” they may have incorrectly responded that
that number isequal to “1in 7,400.” Likewise if participants were
presented with “1 in 200,” they may have incorrectly responded
that that number is equal to “.02.” This strategy is likely an
overgeneralization of a few instances where this works. For ex-
ample, “1 in 100" is represented by .01, and “1 in 1,000" is
represented by .001. If studentsincorrectly generalized this pattern
to the rest of the data, then their slopes would equal —1.0. Thisis
consistent with the observed data. Often, participants’ graphs
showed severd lines of the same slope but different intercept (see
Figure 9). These multiple lines were the result of changing the
magnitude of their responses. For example, a participant may have
converted .075to “1 in 750" in one trial and converted .085 to “1
in 8,500” in ancther trial. These data, together with mathematically
correct conversion computed by a minority of participants,
strongly suggest that participants used rule-based strategies to
transform relative frequencies to decimals (and vice versa) rather
than accessing a common abstract representation.

General Discussion
Summary of Major Results

The results of the present experiments provide several insights
about how people estimate very low proportions. In Experiment 1,
participants were shown proportions expressed as displays of dots
and were asked to estimate the proportions as relative frequencies
or decimals. The results of Experiment 1 demonstrated that (a) the
relation between estimated and presented proportions was a power
function, (b) participants overestimated very low proportions, and
(c) participants estimated proportions differently depending on
whether they labeled the proportions as relative frequencies or
decimals. In Experiment 2, participants were shown proportions
expressed as relative frequencies, decimals, or displays and were
asked to create a display of dots that matched the presented
proportions. The results of Experiment 2 demonstrated that (a) the
relation between estimated and presented proportions was a power
function, (b) participants overestimated very low proportions, (c)
participants estimated proportions differently depending on
whether they were presented proportions in relative frequency or
decimal format, and (d) the estimation patterns found in Experi-
ment 2 were not inversely related to the patterns in Experiment 1.
In both Experiments 1 and 2, there was no effect of gender. In
Experiments 3 and 4, we varied the total number of dots in the
judgment and production tasks. The results of Experiments 3 and 4
demonstrated that there is little or no effect of the total number of
dots either in the presentation screen or the response screen on the
participants estimates. The one exception was when participants
were asked to estimate proportions of .2 in the judgment task. In
that instance, there was an effect of the total number of dots.
Finaly, in Experiment 5, participants were asked to convert rela
tive frequencies to decimals and vice versa. The results of Exper-
iment 5 demonstrated that (a) the relation between estimated and
presented proportions was a power function and (b) the majority of
participants produced patterns showing a negative relation be-
tween relative frequencies and decimals.

Overall, these experiments demonstrated that participants were
inaccurate when estimating very low proportions, and participants’
estimates were generaly robust over the total number of dots.
Below we discuss the various biases associated with our partici-
pants’ responses.

Biases in Labeling Perceived Probability

Our data allow us to detect three types of biases associated with
our participants' responses. aresponse bias, a perceptual bias, and
anumerical transformation bias. To assess these biases, we com-
pared our participants responses across conditions and experi-
ments. The presence of each bias is indicated by a particular
pattern of response. Unfortunately, although our data allow us to
identify the presence and general structure of these biases, they do
not allow us to precisely quantify each bias. This limitation exists
because several biases are present in the data, and each bias may
take the form of a power function. Therefore, there are too many
free parameters to mathematically identify each bias.

Response bias. A response bias occurs when participants
estimates are influenced by a partiality toward certain response
options. A response biasisreveaed if participants estimatesin the
judgment and production tasks are not inversely related (see
Brooke & MacRae, 1977). Our data exhibited this pattern. The
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response bias revealed in the present experiments takes the form of
aconsistent overestimation in both judgment and production tasks
(Experiments 1 and 2), indicating a bias against very low propor-
tions (under .01).

There are several mathematical forms that a response bias may
take. One relatively ssimple form is that the output of g(¢) and
g'(#) are both transformed in the same way,

Ry = fr(g(¢))

where fi, is a response function and R, and R,, are the numerical
and stimulus responses, respectively. In this form, fg is mathemat-
ically identified:

and R, = fo(g X(#), (10)

f'(R)=fr(Ry). (11)

Furthermore, this model makes the prediction that when the in-
verse response transformation, f5 ™, is applied to the judgment and
production responses, the resulting functions should be the inverse
of one and other,

fa*(Ry) = 9(¢)

We calculated f; using Equation 11, assuming f takes the form
of a power function. The resulting response functions for the
decimal, log(y) = —0.5273 + 0.7812 * log(x), and relative fre-
quency, log(y) = 0.5744 + 1.21 * log(x), conditions failed to
satisfy the prediction of Equation 12. Therefore, thisis an unlikely
model for the response bias.

A more likely model of response bias assumes that participants
overestimate because they have difficulty anchoring their re-
sponses. One such model accounts for overestimation by adding a
constant (a) to the input of the numerical transformation function.
Therefore in the judgment task,

Ry = fu(fs(¢) + @), (13)
and in the production task,

and YRy = g '(#). (12

R, = fs'(fu(# + a). (14)

Unfortunately, because Equations 13 and 14 are not identified, the
model cannot be tested.”

Regardless of the form that the response function takes, the
present experiments are the first psychophysical experiments to
demonstrate a response bias against very low proportions. Al-
though overestimation of proportions under 0.5 in the judgment
task is a very robust finding (e.g., Brooke & MacRae, 1977;
Hollands & Dyre, 2000; Spence, 1990; Varey et al., 1990), only
participants in Brooke and MacRage' s experiments completed both
the judgment and production tasks. Brooke and MacRae found no
evidence for aresponse bias.? The difference between the findings
of the present experiments and the findings of Brooke and Mac-
Rae's experiments may be due to the different ranges of propor-
tions used. Recall that the lowest proportion presented in Brooke
and MacRae's experiment was .10, so their participants never had
an opportunity to exhibit a response bias against proportions under
.01.

Perceptual bias. A perceptua bias refers to a propensity to
estimate a proportion in a certain direction because of a misper-
ception of the stimulus (see Hollands & Dyre, 2000, for a discus-
sion of perceptua bias in proportion estimation). Brooke and
MacRae (1977) stated that if participants have a perceptua bias

when estimating proportions, inverse tasks (judgment and produc-
tion) should produce inverse patterns of estimations. This is only
true, however, when (a) fy, = 1, and (b) there is no evidence of a
response hias.

To assess the presence of a perceptua bias without arbitrarily
fixing fy, = 1 or in the presence of a response bias, one must hold
the numerical transformation function constant and vary the phys-
ical stimulus. If g(¢) and g™(#) vary with the physical stimulus,
then the variation must be the result of different stimulus trans-
formation functions, and therefore different perceptual biases. In
Experiments 3 and 4, we presented participants with displays that
varied in their total numbers of dots. By comparing participants
responses within each numerical format condition, we fix the
numerical transformation function. We can therefore ascribe any
difference between the patterns of responses across displays to
different stimulus transformation functions.

The results of Experiments 3 and 4 indicate that, in most
conditions, there was little effect of the total number of dots on
participants' responses. The one exception to this finding was the
.2 display in the judgment task for both the relative frequency and
decimal conditions. In these conditions, g(¢) varied with the total
number of dots. Thus, for the relatively large proportion of .2,
there is evidence for a distinct perceptual bias.

The presence of a perceptual bias of the .2 display is not
unexpected given that perceptions of virtually every physical stim-
ulus from light to electric shock are biased (e.g., Marks, 1974,
Stevens, 1986). It is noteworthy, however, that no direct evidence
was found for perceptual biases associated with displays repre-
senting proportions below 2%. Because perceptua biases are de-
tected only in relation to one and other, the lack of evidence for a
perceptual bias suggests a constancy of bias across displays rather
than alack of bias. Thus, our participants perceptions of propor-
tions below 2% were relatively stable, whereas those over 2% were
relatively volatile. The source of this volatility should be explored.

Numerical transformation bias. A numerica transformation
bias occurs when one imperfectly converts a stimulus into a
numerical label and vice versa. For example, when participants are
asked to describe a perception in terms of a number, they must
transform their perception into a number. If this transformation is
different for each numerical format (e.g., relative frequency, dec-
imals, and magnitude estimates), participants have a numerical
transformation bias.

To assess the presence of a numerical transformation bias, one
must hold the stimulus transformation function constant and vary
the numerical format. If g(¢) and g™*(#) vary with the numerical
format, then the variation must be the result of different numerical
transformation functions, and therefore different numerical trans-
formation biases. In the present experiments, participants in both

7 Although we have only identified two forms that the response function
may take, there are innumerable other possible forms. Most, if not all, of
these forms are not identified and therefore cannot be tested with the
present data.

8The perceptual bias found in Brooke and MacRae's (1977) study
should be accepted only with caution. The participants in Brooke and
MacRae's study always completed the judgment phase before the produc-
tion phase. Therefore, in Brooke and MacRae's study, the results of the
production phase were confounded by the participants experiences in the
judgment phase. Because we used different participants in Experiments 1
and 2, this was not an issue in our experiments.
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the decimal and relative frequency conditions were presented with
the same stimuli. Therefore, the stimulus transformation function
wasfixed, and any difference between the patterns of responses for
the two numerical format conditions can be ascribed to different
numerical transformation functions.

To assess whether the numerical transformation for relative
frequency isidentical to that for decimals, we examined the slopes
of each condition. Because the power law can describe our data,
the slope of the log-log transformed data carries the information
about how the participants’ reported magnitude varies with the
magnitude of the presented stimulus (Stevens, 1986). Therefore, if
the numerical transformation function for relative frequency is
identical to that for decimals, one would expect to find similar
slopes in our participants’ data. If the slopes are different, partic-
ipants have a numerical transformation bias.

In both the judgment task (Experiment 1) and production task
(Experiment 2), participants slopes in the decimal and relative
frequency conditions were significantly different. In fact, the data
from the decimal condition curved in the opposite direction as that
from the relative frequency condition (asindicated by slopes above
and below 1). This demonstrates the existence of a numerical
transformation bias.

The discovery of a numerical transformation bias augments our
understanding of biases in proportion estimation. Specifically, our
data indicate that the pattern of the estimation error is in part
dependent on the format of the numerical labels used when col-
lecting estimates. Although this finding has little impact on the
validity of models of estimation bias, such as Hollands and Dyre's
(2000) cyclical power model, it does suggest that the critical
exponent estimated using those models would depend on the
format of the numerical label requested of the participant. Further
implications of the numerical transformation bias are discussed
below (see the Implications section below).

Robustness of biases. Experiments 1 and 2 show no gender-
specific response biases (i.e., our findings were robust over gen-
der). This finding is important, because it helps validate a long-
held but rarely tested assumption characteristic of any experiment
that uses probability estimates to assess cognitive states such as
beliefs and attitudes (e.g., when participants are asked to estimate
their probability of contracting HIV; D. J. Cohen & Bruce, 1997).
Researchers assume that gender effects in such experiments do not
simply reflect differences in how men and women use and inter-
pret numbers (i.e., not an effect of the response class). This
assumption is not risk free given that gender-specific effects are
sometimes found in spatial and mathematical reasoning tasks (for
a review, see Hyde & McKinley, 1997). Because the results of
Experiments 1 and 2 show no difference in how male and female
participants interpret and use very low probabilities, they support
the assumption that gender effects in experiments that use proba-
bility estimates to assess cognitive states are not simply an effect
of the response class.

Experiments 3 and 4 show that participants’ estimates are robust
over the total number of dots for proportions of .002 and .02 in
both the judgment and production tasks. For the proportion of .2,
participants’ estimates were robust over the total number of dots
only in the production task. In the .2 proportion condition of the
judgment task, participants’ estimates increased as the total num-
ber of dots increase. These findings suggest that biases found in
Experiments 1 and 2 (which measured estimates of proportions
less than .01) would be present regardless of the number of dotsin

the visual display. In contrast, any biases present for proportions
greater than .02 may depend on the number of dots in the visua
display. This provides some evidence that participants treat rela-
tively large proportions differently than they treat very low pro-
portions (see the next section, On Very Low Proportions and
Reference Points). This may contribute to why the biases found in
the present series of experiments are different from those found
when participants estimate proportions greater than .01 (e.g., Hol-
lands & Dyre, 2000; Spence, 1990).

On Very Low Proportions and Reference Points

The results of Experiments 1 and 2 suggest that the biases
associated with estimating very low proportions are different from
those associated with estimating proportions between 1% and
99%. Previous research has demonstrated that participants produce
an inverse ogival error pattern when estimating proportions be-
tween 1% and 99% (e.g., Hollands & Dyre, 2000). Furthermore,
Hollands and Dyre have shown that much of that data can be well
described by their cyclical power model. In contrast, (a) our data
are best described by Stevens's Power Law (Stevens, 1986), and
(b) our participants exhibited a response bias against very low
proportions.

The fundamental difference between our data and that of Spence
(1990) and Hollands and Dyre (2000) is that our participants
failed to adopt an upper reference point. If participants do not
adopt an upper reference point, both the cyclical power model and
the power model will fail. However, because Stevens's Power Law
does not incorporate an upper reference point, it fits our data well.

Our participants' failure to adopt an upper reference point is
likely a function of the quantities presented in our experiments.
Spence (1990) proposed that participants naturally adopt 1.0 as an
upper reference point. The natural reference point of 1.0, however,
may have been too distant from the quantities we presented to be
used effectively by our participants. Recall that the largest quantity
presented in our experiments was 0.01. Furthermore, athough
Hollands and Dyre (2000) demonstrated that participants will
adopt other reference points, these reference points must be salient
(e.g., visible marks on a glass). In our experiments, we provide no
sdient reference points. Thus, our participants may not have
adopted an upper reference point because no natural or salient
reference point was accessible.

Reference points are critical to the accurate estimation of pro-
portions because reference points act to correct for over- and
underestimation by “pulling” participants’ estimates toward accu-
racy. In the absence of a salient or natural reference point, partic-
ipants estimates will continuously deviate from accuracy. Conse-
quently, our participants' failure to adopt an upper reference point
resulted in functions that cannot be generalized beyond the pro-
portions presented. For example, the function predicting male
participants responses in the decimal judgment task is log(esti-
mated proportion) = 0.917 + 1.231 * log(presented proportion).
Although this equation accurately describes male participants
estimates of very low proportions, it provides absurd predictions
for larger proportions (e.g., this function predicts that men will
estimate “0.5" as “3.519").

Finaly, it is worth noting that familiarity with quantities may
influence the adoption of reference points. That is, the more
familiar oneiswith aquantity, the more likely that quantity can act
as a reference point. The magnitude of our participants errors
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suggests that our participants were not even familiar with the
quantities near the presented proportions. This finding is not un-
expected because very low proportions are infrequently experi-
enced. Therefore, the quantity representations associated with very
low proportions may be both inaccurate and noisy. Indeed, the
limited research assessing people’s understanding of very low
proportions suggests that people have extreme difficulty interpret-
ing these values (e.g., Kaplan, Hammel, & Schimmel, 1985; Roth-
man & Kiviniemi, 1999).

Our hypothesis that participants failed to adopt an upper refer-
ence point because no reference point was accessible leads to the
prediction that one can increase the accuracy of participants
estimates by making an upper reference point accessible. One can
make an upper reference point accessible by (a) providing a salient
reference point similar to those used by Hollands and Dyre (2000),
(b) expanding the quantities assessed to include or be relatively
close to a natura reference point, or (c) increasing participants’
familiarity with at least one quantity in the range assessed. It
should be noted, however, that very low proportions are rarely
communicated with salient reference points (Environmental Pro-
tection Agency, 1991). Our results suggest that this lack of salient
reference points may explain the difficulty associated with effec-
tively communicating low-risk events.

In sum, estimates of very low proportions appear to be different
from estimates of proportions between 1% and 99%. This differ-
ence may be a function of participants inability to adopt an upper
reference point. Further research is needed to determine whether
this finding is a result of the novelty of the proportions presented
or whether it is specific to very low proportions.

Numerical Representation

The results of Experiments 1, 2, and 5 provide the information
necessary to assess the validity of the McCloskey model and the
Gonzalez and Kolers model. McCloskey (1992) proposed that all
comprehension, production, and computational processes are me-
diated by a single quantity representation. In contrast, Gonzalez
and Kolers (1982) proposed that each numerical format is associ-
ated with a unique quantity representation. The research that
addresses this question has centered on assessing the similarity of
number comparison processes across numerical formats (for re-
views, see Dehaene, 1992; McCloskey, 1992) rather than assessing
participants' intuitive senses of amount associated with each nu-
merical format. In the present experiments, we assessed how
participants’ intuitive senses of amount associated with each nu-
merical format relate to how participants convert between numer-
ical formats. The data from Experiments 1 and 2 show that
participants retained the correct ordinal relation between both
numerical formats and the visual displays, whereas the data from
Experiment 5 reveal that participants could not retain the correct
ordinal relation when converting between the two numerical
formats.

The McCloskey model of numerical processing predicts that the
bias associated with converting Format A to Format B would equal
the combined biases associated with converting Format A to a
quantity representation and converting that quantity representation
to Format B (Equation 8). The data from Experiment 5 refute this
prediction. Instead, the data suggest that the majority of partici-
pants used an imperfect rule-based strategy to convert between the
two formats. Furthermore, these participants were apparently un-

aware that their rule-based strategy reversed the relation between
the two formats. Thus our data strongly suggest that a single
quantity representation did not mediate the conversion between the
two formats.

Gonzalez and Kolers's (1982) model, in contrast, anticipates our
results. Gonzalez and Kolers hypothesized that there exist multi-
ple, incompatible quantity representations and the incompatibility
may “make it impossible to translate one symbol into another” (p.
318). The difficulty translating between numerical formats results
from participants’ inability to rely on a common quantity repre-
sentation or even compare quantity representations. Consequently,
participants must use a nonanalog process to convert between
numerical formats. Furthermore, because no quantity representa-
tion is involved, participants will be unaware of inconsistencies
between the output of the nonanalog strategy and the quantity
representation associated with each numerica format. Our data
mirror these predictions and therefore support the hypothesis that
relative frequencies and decimals are represented in the human
brain by different, incompatible quantity representations.

The source of the difference between our data and the data
supporting the McCloskey model may be the quantities used. Most
research investigating quantity representations has assessed verbal
versus Arabic symbols of integers (for reviews, see Ashcroft,
1992; Dehaene, 1992, 1997; McCloskey, 1992). Because verbal
and Arabic symbols of integers are experienced daily, the high
familiarity of these symbols may facilitate the use of a shared
quantity representation. In contrast, the present experiment as-
sessed two forms of Arabic notation of very low proportions.
Because both the symbols of very low proportions and the actual
proportions are experienced much less frequently, the quantity
representations associated with each numerical format may not
have integrated into a single quantity representation. Thus, it may
be that the relation between familiarity and quantity representa-
tions is critical and requires further exploration.

Implications

In the present article, we show that people have perceptual,
response, and numerical transformation biases when estimating
very low proportions using relative frequency and decimal for-
mats. The perceptual bias revesaled in the present experimentsis a
function of the participants’ perception of the visual displays we
used to represent very low proportions. Although this perceptual
bias generalized over a large range of the number of dots in the
display, the degree to which it generaizes to other nonverbal
representations of amount still needs to be explored.®° However,
because the response and numerical transformation biases revealed
in the present experiments are theoretically independent of the
nonverbal stimulus used to represent amount (i.e., the visua dis-
plays), one expects them to generalize to all nonverbal stimuli used
to represent amount. These biases have implications to all areas of
psychological research that use numerical labels as stimuli or
responses.

Of the biases discussed, the numerical transformation bias may
have the most serious practical implications. First, because partic-

° However, consistent error patterns have been demonstrated across
stimuli and perceptual dimension for proportions between .01 and .99 (for
a discussion, see Hollands & Dyre, 2000).
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ipants use relative frequencies differently than they use decimals,
the magnitude of responses from experiments that use one numer-
ical format cannot be directly compared with those that use a
different numerical format. However, because response types were
ordinally related to the proportions in the visual displays of Ex-
periments 1 and 2, researchers may be able to compare the ordinal
relations between conditions. Second, because participants had a
consistent bias for each numerical format, researchers can compare
the magnitudes of responses between experiments that use the
same numerical format. Third, because the participants psycho-
physica functions for each numerical format were consistent,
these functions may be used to aid researchersin understanding the
meaning of participants estimates of very low probabilities. For
example, when participants are asked to describe the risks associ-
ated with a very low probability event, any large deviations from
these functions may indicate the presence of an effect above and
beyond the biases described here.

The numerical transformation bias aso has severa serious im-
plications beyond those related to relative frequencies and deci-
mals. N. Schwarz (1999) reviewed the psychological literature and
provided substantial evidence that response format affects the
magnitude of participants' responses in many instances. N.
Schwarz hypothesized that many response effects are a result of
participants using the response alternatives to clarify the question
asked. That is, different response aternatives suggest different
interpretations of the same question. Although this is likely the
case in many instances, we hypothesize that this is not the case in
the present experiments because our task was relatively unambig-
uous. Instead, we hypothesize that the numerical transformation
bias found in the present experiments arises because people asso-
ciate numerical labels in decimal format with different quantity
representations than they do numerical labels in relative frequency
format. If thisisthe case, researchers must be aware of at least two
different sources of response effects: (a) the effects due to the
information contained in the response format (as suggested by N.
Schwarz) and (b) the participants' understanding and use of the
numbers themselves (as our data suggest).

One area of psychology in which participants' understanding
and use of numbersis critical isthat of psychophysics. Perceptual
psychologists have used magnitude estimation procedures to de-
termine the relation between physical stimuli and the psycholog-
ical perception of those stimuli (for reviews, see Gescheider, 1988;
Marks, 1974; Marks & Algom, 1998; Stevens, 1956, 1986). The
data from magnitude estimation procedures have reliably exhibited
apower function. The characteristic exponent, which describes the
curvature of the raw data, has been used as the measure of the
relation between physical stimuli and the psychological perception
of those stimuli. Experiments 1 and 2 demonstrate that estimates
using relative frequency and decimal formats also exhibit a power
function, but the characteristic exponent was a function of the
participant’s response format. Specifically, participants' responses
in the relative frequency condition consistently exhibited an op-
posite curvature than participants responses in the decimal con-
dition. Because magnitude estimates are another form of numerical
labeling, there is no a priori reason to believe that magnitude
estimates are immune to this numerical transformation bias. If
maghitude estimates are susceptible to numerical transformation
bias, then interpretation of the characteristic exponent becomes
difficult.

Findly, it is worth repeating that the effect of participants
understanding and use of numbers on the data they produce, and
therefore the conclusions researchers draw, may be substantial.
This point is illustrated in the work of Gigerenzer and his col-
leagues (e.g., Gigerenzer & Hoffrage, 1995; Seldmeier & Giger-
enzer, 2001). Recall that Gigerenzer and his colleagues demon-
strated that participants engage in accurate Bayesian reasoning
when amount information is expressed as relative frequencies but
fail at Bayesian reasoning when amount information is expressed
in decimal format. It is of great interest to determine how numer-
ical format interacts with peopl€’s other mathematical and reason-
ing abilities.

Conclusion

In this article, we presented a theoretical and experimental
framework for assessing the biases associated with how people
interpret numbers, and we showed how this framework could
reveal details concerning how quantity information is represented
in the human brain. We reported five experiments that assessed
how people interpret and represent relative frequencies and deci-
mals that denote very low proportions (i.e., proportions below
1%). Our participants demonstrated perceptual, response, and nu-
merical transformation biases when making their estimates. Fur-
thermore, our data suggest that relative frequencies and decimals
are associated with different quantity representations. Our data,
therefore, cast doubt on the assumption of numerical equivalence.
Without the assumption of numerical equivalence, it becomes
essential to determine how numerical format interacts with peo-
ple’s mathematical and reasoning abilities.
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